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Abstract—We have designed and fabricated a low-power 4 : 1
multiplexer (MUX), 1 : 4 demultiplexer (DEMUX) and full-
clock-rate 1 : 4 DEMUX with a clock and data recovery (CDR) cir-
cuit using undoped-emitter InP–InGaAs HBTs. Our HBTs exhibit
an of approximately 150 GHz and an max of approximately
200 GHz at a collector current density of 50 kA m2. In the circuit
design, we utilize emitter-coupled logic and current-mode logic
series gate flip-flops and optimized the collector current density of
each transistor to achieve low-power operation at required high
bit rates. Error-free operation at bit rates of up to 50 Gbit/s were
confirmed for the 4 : 1 MUX and 1 : 4 DEMUX, which dissipates
2.3 and 2.5 W, respectively. In addition, the full-clock-rate 1 : 4
DEMUX with the CDR achieved 40-Gbit/s error-free operation.

Index Terms—Clock and data recovery (CDR), demultiplexer
(DEMUX), HBT, InP, integrated-circuit (IC) design, multiplexer
(MUX), optical communications.

I. INTRODUCTION

THERE ARE strong demands for more transmission ca-
pacity in optical communications systems to support

various communication services. High-speed integrated circuits
(ICs) are necessary for broad-band optical communications sys-
tems. A multiplexer (MUX), a demultiplexer (DEMUX), and
a clock and data recovery (CDR) circuit are key components
of these systems and measuring equipment. Considerable work
related to the design and fabrication of over-40-Gbit/s-class
MUX, DEMUX, and CDR circuits has been carried out using
InP-based HBTs [1]–[4], SiGe-based HBTs [5]–[9], and InP-
based high electron-mobility transistors (HEMTs) [10], [11].

InP-based HBTs offer high internal gain and excellent
high-frequency performance. In addition, we have developed
undoped-emitter InP–InGaAs HBT technology [12], [13]. The
undoped-emitter structure offers higher cutoff frequency
than the conventional -doped-emitter one at low collector
current density. Thus, undoped-emitter InP–InGaAs HBTs
are potentially attractive for high-speed high-sensitivity ICs
with low-power consumption. In this study, we employed
undoped-emitter InP–InGaAs HBT technology to fabricate a
4 : 1 MUX, 1 : 4 DEMUX, and a full-clock-rate 1 : 4 DEMUX
with a CDR circuit for over-40-Gbit/s optical communications
systems and measuring equipment.
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Fig. 1. 4 : 1 MUX IC. (a) 4 : 1 MUX architecture. (b) 2 : 1 MUX block and the
timing chart.

In this paper, we present the circuit design and experimental
results for the 4-bit MUX/DEMUX chip set. Section II discusses
the circuit design of the 4 : 1 MUX, 1 : 4 DEMUX, and CDR
circuit for achieving high-bit-rate operation with low-power
consumption. Section III briefly describes our InP–InGaAs
HBT technology. Section IV presents the measuring systems
and measured IC performances.

II. CIRCUIT DESIGN

A. 4 : 1 MUX

Fig. 1 is a schematic of the 4 : 1 MUX. We adopt the con-
ventional tree-type architecture. The 2 : 1 MUX block consists
of a three-stage D flip-flop (TS-DFF), master–slave D flip-flop
(MS-DFF), and selector (SEL) gate to get a wide phase margin,
as shown in the timing chart. By using the TS-DFF, the data-2
signal is delayed by a half bit from the data-1 signal. The half-bit
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Fig. 2. Circuit configurations of the master–slave flip-flop. (a) ECL type.
(b) CML type.

Fig. 3. Simulated power consumption dependence of maximum toggle
frequencies.

delay ensures a wide phase margin for selecting the data signals
in the SEL gate.

An emitter-coupled logic (ECL) and a current-mode logic
(CML) series gate are used for the flip-flops and the SEL gate.
The circuit configurations of the MS-DFF are shown in Fig. 2.
In this paper, the flip-flop consisting of current switches and
emitter followers is called the ECL flip-flop [see Fig. 2(a)].
The flip-flop consisting of current switches only is called the
CML flip-flop [see Fig. 2(b)]. Fig. 3 shows the simulated power
consumption dependence of the maximum toggle frequency for
both flip-flops, where is the load capacitance, which in-
cludes the loading effects of subsequent devices and the capac-
itance of the interconnecting metal layer. We roughly assume
that is 0.1 pF. The device parameters of our InP–InGaAs

HBT were used for the SPICE simulation. The ECL flip-flop
has the emitter follower between the master latch and slave
one. The input impedance of the emitter follower is very high
and the output impedance is very low. This results in high-
speed switching of upper-level current switch transistors. In ad-
dition, by using the emitter follower, the upper-level current
switch transistors are appropriately biased between the base and
collector to minimize the base–collector capacitance . On
the other hand, the upper-level current switch transistors of the
CML flip-flop were biased in the soft saturation region. There-
fore, the maximum toggle frequency of the ECL flip-flop is
much higher than the CML one. The ECL flip-flop is attractive
for high-speed operation. Therefore, we used the ECL flip-flop
in the final 2 : 1 MUX stage. Over-50-GHz flip-flop operation
is expected using our InP–InGaAs HBTs.

On the other hand, the CML flip-flop is attractive for low-
power operation at operating speeds below 40 GHz. For ex-
ample, to achieve 30-GHz operation, the ECL and the CML flip-
flops consume approximately 35 mW/flip-flop and 15 mW/flip-
flop, respectively, as shown in Fig. 3. The power consumption
of the CML flip-flop is below half that of the ECL one. In order
to achieve accurate operation with low-power consumption, we
adopted the CML flip-flop in the 4 : 2 MUX stages. The col-
lector current densities ( ’s) of the HBTs in the CML flip-flop
were designed to be about half that of the ECL flip-flop to re-
duce the power consumption as much as possible. The internal
voltage swing is designed to be 0.5 V for both flip-flops.

Other key blocks to achieve both high-speed operation and
low-power consumption are the clock distribution circuits,
which are shown in Fig. 4. The high current density of current
switch transistors results in high-speed switching. The ’s
of current switch transistors were optimized for the required
operating speed. For the emitter follower transistors in Fig. 4(a)
and the second emitter follower ones in Fig. 4(b), there is a
tradeoff between the driving capability and power consumption.
Therefore, we optimized the number of transistor and ’s of the
transistors on the emitter followers by determining the required
operating speed and number of fan-outs. In optimizing, we also
took the parasitic resistance and capacitance of interconnecting
metal layers into consideration. The parasitics were extracted
from the layout patterns and back-annotated in the design cycle.

B. 1 : 4 DEMUX

A block diagram of the 1 : 4 DEMUX is shown in Fig. 5.
The 1 : 4 DEMUX employs the conventional tree-type archi-
tecture. The 1 : 2 DEMUX consists of a TS-DFF and MS-DFF.
As shown in the timing chart, a wide phase margin is obtained
by using the TS-DFF. The 1 : 2 DEMUX and the 2 : 4 DEMUX
stages use flip-flops based on ECL and CML series gates, re-
spectively. The ’s of each transistor for the clock distribution
circuits in the 1 : 4 DEMUX are also optimized. The principle
of circuit design is much the same as the 4 : 1 MUX.

C. 1 : 4 DEMUX With CDR

The one-chip full-clock-rate 1 : 4 DEMUX with CDR
monolithically integrates a linear-type phase detector (PD),
a lag-lead low-pass filter (LPF), full-rate voltage-controlled
oscillator (VCO), 1 : 4 DEMUX, and toggle flip-flop (T-FF), as
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Fig. 4. Circuit configurations of the clock distribution circuits. (a) Second-
level output. (b) Third-level output.

(a)

(b)

Fig. 5. 1 : 4 DEMUX IC. (a) 1 : 4 DEMUX architecture. (b) 1 : 2 DEMUX
block and the timing chart.

shown in Fig. 6. The 1 : 4 DEMUX mentioned in Section II-B
is used as the DEMUX in this IC. The linear-type PD enables
low-power operation because it can be constructed with few

Fig. 6. One-chip full-clock-rate 1 : 4 DEMUX with the CDR.

Fig. 7. Circuit configuration of the PD.

transistors compared with other types of PDs. It offers a wide
pull-in range without a frequency acquisition circuit.

The half-bit-delayed data is used as standard timing data. The
PD outputs a signal pulse that includes phase error by comparing
the , , and the half-bit-delayed data. The phase error
signal is filtered by the LPF, which suppresses the high-fre-
quency signal components. The LPF output signal controls the
VCO. The VCO outputs a 40-GHz clock signal. This IC was
designed to operate at the full clock rate of 40 GHz. The IC
consists of 531 transistors and 368 resistors.

The configuration of the PD is shown in Fig. 7. It consists
of two multiplier circuits to improve tolerance to data signal
mark ratio variations [14] and data transition density variations.
One multiplier detects phases between the input data and

by calculating . The calculated data,
however, contains data-transition-density information. The
other multiplier detects only the data-transition-density infor-
mation by calculating half-bit-delayed . The PD
roughly compensates the effect of the data transition density on
the dc level of the PD output by finding the difference between
the two multipliers’ outputs.

Photographs of the 4 : 1 MUX, 1 : 4 DEMUX, and full clock
rate 1 : 4 DEMUX with the CDR are shown in Fig. 8. The chip
size is 3 3 mm for all ICs. The power supply voltage was
designed to be 4.5 V.

III. FABRICATION TECHNOLOGY

The undoped-emitter InP–InGaAs HBTs used in this study
were grown by metalorganic vapor phase epitaxy (MOVPE)
on a 3-in semi-insulating InP substrate. Carbon was the base
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Fig. 8. Photographs of the: (a) 4 : 1 MUX, (b) 1 : 4 DEMUX, and (c) 1 : 4 DEMUX with the CDR.

dopant. We employed a simple nonself-aligned process to make
these ICs [12]. The HBT has a 70-nm-thick undoped InP emitter,
a 50-nm-thick carbon-doped InGaAs base, and a 300-nm-thick
InGaAs collector. The and maximum oscillation frequency

were approximately 150 and 200 GHz at a collector cur-
rent density of 50 kA/cm and a collector-to-emitter voltage
of 1.2 V. In this study, all transistors have an emitter width of
1.0 m.

IV. IC PERFORMANCE

Measurements of ICs were performed on-wafer using
RF probes. Schematic diagrams of the measuring systems
are shown in Fig. 9, where (a) is the measuring system for
the 4 : 1 MUX and (b) is that for the 1 : 4 DEMUX and the
full-clock-rate 1 : 4 DEMUX with the CDR. For measurement
of the 4 : 1 MUX, the four input data signals up to 12.5 Gbit/s
with word length of were generated by a four-channel
pulse-pattern generator (PPG). The output data signal (QT)
of the device-under-test (DUT) were demultiplexed into

four-channel data signals using a DEMUX module consisting
of GaAs MESFET and InP HEMT ICs [15]. Error-free opera-
tion was confirmed at every channel using a four-channel error
detector. The output data (QC) and the output clock (CLK/4)
signals were monitored with an oscilloscope. We measured
the clock phase margins by shifting the four input data signals
using phase shifter A.

For measurement of the 1 : 4 DEMUX and 1 : 4 DEMUX with
the CDR, we generated a pseudorandom bit stream (PRBS) of
up to 50 Gbit/s by quadrupling a PRBS of up to 12.5 Gbit/s
with a word length of using a MUX module. The phase
shifter was used to shift the data signal to measure the phase
margin. The output data signals of the DUT were connected
with the four-channel error detector or the oscilloscope. We also
confirmed error-free operation of every channel in this case. The
input clock signal of the DUT (CLK/2) was not needed for the
measurement of 1 : 4 DEMUX with the CDR.

The 4 : 1 MUX operated a bit error rate of less than 1 10
at a bit rate of up to 50 Gbit/s. Dead bands were not observed.
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(a)

(b)

Fig. 9. Schematic diagram of the measuring systems for: (a) 4 : 1 MUX,
(b) 1 : 4 DEMUX, and 1 : 4 DEMUX with the CDR circuit.

Both input data and clock signal amplitudes were set at approx-
imately 0.9 Vp-p. The clock phase margins were approximately
200 and 180 at 45 and 50 Gbit/s, respectively. These phase
margins include the skew for the four-channel input data sig-
nals. The output pattern had a good eye opening at 50 Gbit/s, as
shown in Fig. 10. The accumulation time was 15 s. Output data
swing was approximately 0.79 Vp-p. The rise and fall times
(20%–80%) were approximately 9.6 and 6.7 ps, respectively.
The output data peak-to-peak and rms jitters were approxi-
mately 5.8 and 1.1 ps, respectively.

The 1 : 4 DEMUX also operated a bit error rate of less than
1 10 at a bit rate of up to 50 Gbit/s without dead bands.
High input sensitivity of below 38 mV (eye height) was obtained
at 50 Gbit/s. The clock signal amplitude was set at approxi-
mately 0.9 Vp-p. The clock phase margin was approximately
140 at 50 Gbit/s with the data signal amplitude of approxi-

Fig. 10. Output eye pattern of the 4 : 1 MUX at 50 Gbit/s (upper) and output
clock signal (lower).

Fig. 11. One of the output eye patterns of the 1 : 4 DEMUX at 50 Gbit/s (upper)
and the output clock signal (lower). Almost the same eye pattern was obtained
at the other channels.

mately 0.9 Vp-p. Fig. 11 shows a typical demultiplexed output
eye pattern (channel 1) at the input data rate of 50 Gbit/s. Al-
most the same eye pattern was obtained at the other channels.
Output data swing was approximately 0.65 Vp-p. The rise and
fall times (20%–80%) were approximately 28 and 23 ps, respec-
tively. The output data peak-to-peak and rms jitter were approxi-
mately 15 and 3 ps, respectively. The maximum operating speed
of 50 Gbit/s for both 4 : 1 MUX and 1 : 4 DEMUX is not limited
by the IC performances, it is limited by the measurement equip-
ment performance. Over-50-Gbit/s operation will be achievable
for both ICs.

The full clock rate 1 : 4 DEMUX with the CDR was oper-
ated at 40 Gbit/s. The 1/4 clock signal and the demultiplexed
output eye patterns are shown in Fig. 12. Good eye opening was
obtained. The error-free operation at 40 Gbit/s was confirmed.
Fig. 13 shows the measured phase noise of the recovered 1/4
clock signal (10 GHz). The phase noise at 1-MHz off-carrier
was 118 dBc/Hz.

Low power consumptions of approximately 2.3, 2.5, and
3.6 W were achieved for the 4 : 1 MUX, 1 : 4 DEMUX, and
full-clock-rate 1 : 4 DEMUX with the CDR, respectively. It can
also be said based on by our results that a 4 : 1 MUX with a
clock multiplier unit (CMU) circuit will be achievable by using
the 4 : 1 MUX and the phase-locked loop (PLL) architecture of
the CDR circuit in this study.
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Fig. 12. 1/4 output clock signal (upper) and output eye patterns of the 1 : 4
DEMUX with the CDR at 40 Gbit/s.

Fig. 13. Measured phase noise of recovered 1/4 clock signal for 1 : 4 DEMUX
with the CDR.

V. CONCLUSION

We have successfully designed and fabricated a low-power
4 : 1 MUX, 1 : 4 DEMUX, and full-clock-rate 1 : 4 DEMUX
with a CDR using undoped-emitter InP–InGaAs HBT tech-
nology. Up-to-50 Gbit/s error-free operation was confirmed for
the 4 : 1 MUX and 1 : 4 DEMUX, respectively, and 40-Gbit/s
full-clock-rate operation of the 1 : 4 DEMUX with the CDR was
achieved. Low power consumptions of approximately 2.3, 2.5,
and 3.6 W were obtained for the 4 : 1 MUX, 1 : 4 DEMUX, and
full clock rate 1 : 4 DEMUX with the CDR, respectively. The
results of our study demonstrate that undoped-emitter InP–In-
GaAs HBT technology is an excellent choice for fabricating
high-speed low-power ICs for optical communications systems
and measuring equipment operating at bit rates of over 40 Gbit/s.
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